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The orbitally degenerate A-site spinel compound FeSc2S4 has been experimentally identified as a “spin-
orbital liquid,” with strong fluctuations of both spins and orbitals. Assuming that the second-neighbor spin-
exchange J2 is the dominant one, we argued in a recent theoretical study �G. Chen et al., Phys. Rev. Lett. 102,
096406 �2009�� that FeSc2S4 is in a local “spin-orbital singlet” state driven by spin-orbit coupling, close to a
quantum critical point, which separates the spin-orbital singlet phase from a magnetically and orbitally ordered
phase. In this paper, we refine further and develop this theory of FeSc2S4. First, we show that inclusion of a
small first-neighbor exchange J1 induces a narrow region of incommensurate phase near the quantum critical
point. Next, we derive the phase diagram in the presence of an external magnetic field B, and show that the
latter suppresses the ordered phase. Lastly, we compute the field-dependent dynamical magnetic susceptibility
��k ,� ;B�, from which we extract a variety of physical quantities. Comparison with and suggestions for
experiment are discussed.
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I. INTRODUCTION

Among all the magnetic spinels,1–13 the A-site spinel
FeSc2S4 is particularly intriguing in that its frustration
parameter14,15 f �1000 is one of the largest ever reported.5–7

Indeed, even though the material clearly exhibits well-
formed local moments interacting with a characteristic en-
ergy given by the Curie-Weiss temperature ��CW�=45 K, no
sign of magnetic ordering has been found down to the lowest
measurable temperature of 50 mK. Moreover, FeSc2S4 is in-
teresting because it has not only spin but also orbital degen-
eracy. The Fe2+ ion at the A-site is in a 3d6 configuration,
whose fivefold degeneracy is split by the tetrahedral crystal
field into a lower eg doublet and an upper t2g triplet. The six
electrons in the 3d shell are Hund’s rule coupled, yielding a
high spin configuration with S=2 and a twofold orbital de-
generacy due to a hole in the lower eg doublet. Besides the
fivefold spin degeneracy and the lattice degrees of freedom,
the orbital degeneracy gives an additional contribution to the
specific heat. This has been confirmed experimentally.6,7

Commonly, orbital degeneracies are relieved by a Jahn-
Teller-type structural distortion, that leads to orbital order at
low temperatures. However, in FeSc2S4 no such distortion
has been observed. Hence, both the spins and orbitals remain
frustrated and continue to fluctuate down to the lowest mea-
sured temperature, a situation for which the term “spin or-
bital liquid” �SOL� was coined. A SOL state was also sug-
gested for LiNiO2.16,17 But this proposal has been questioned
recently in Ref. 18, where it was argued that the unusual
behavior of LiNiO2 is due to disorder effects. Therefore
FeSc2S4 remains as the best candidate for a SOL.

In an undistorted lattice, exchange interactions or spin-
orbit coupling can split the orbital and spin degeneracies of a
single Fe2+ ion. To study these possibilities we introduced in
Ref. 19 a model that contains a “Kugel-Khomskii”-type20

spin-orbital exchange interaction as well as the lowest-order
symmetry-allowed atomic spin-orbit coupling. The exchange
interactions favor spin and orbital order whereas the on-site
spin-orbit coupling leads to the formation of a local “spin-
orbital singlet” �SOS�. In FeSc2S4 there is strong competition
between these two interactions. We argued in Ref. 19 that
FeSc2S4 is in the SOS state, close to a quantum critical point
�QCP� that separates the SOS phase from the ordered phase
�see Fig. 1�. This QCP seems to be rather analogous to that
appearing in spin-dimer materials21,22 or bilayer Heisenberg
models,23 with the two orbital states playing the roles of the
two members of a spin dimer or the two bilayer states. How-
ever, we will discover at least one surprising difference be-
low.

Previously, we have argued that, to a first approximation,
FeSc2S4 can be described by a simplified “J2-� model,”19
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FIG. 1. �Color online�. Phase diagram as a function of tempera-
ture T and x, the ratio of exchange to spin-orbit interaction. A QCP
at xc separates the SOS state from the ordered phase. Within the
order phase, at xc2, there is a commensurate-incommensurate phase
transition. “QC” denotes the quantum critical regime, “CO” the
commensurate antiferromagnet with orbital order, and “IC” the in-
commensurate spin and orbital order. Inclusion of a small first-
neighbor exchange J1 induces a second region of incommensurate
phase �shaded area�.
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which only contains on-site spin-orbit and next-nearest-
neighbor �NNN� spin-exchange interactions. Within this ap-
proximation the two fcc sublattices of the A-site diamond
lattice decouple completely. The aim of the present paper is
to refine the model of Ref. 19 and to calculate more detailed
physical properties for comparison with experiments.

We summarize the results here. We first consider the ef-
fects of weak intersublattice nearest-neighbor �NN� exchange
J1. We find that it induces a narrow range of incommensurate
magnetically ordered phase in the vicinity of the QCP, on the
ordered side �see Fig. 1�. Next, we consider the effects of an
external magnetic field B on the QCP in the J2-� model.
Quite surprisingly, we find that the magnetic field destroys
the spin order and the QCP shifts from xc=1 /16 to a larger
value �see Fig. 2�. This is exactly the opposite trend to that
observed in the spin-dimer and bilayer models. Within mean-
field theory we calculate both the uniform and staggered
magnetization as a function of B. Finally, we use the
random-phase approximation �RPA� to compute the field-
dependent dynamical spin susceptibility Im ��k ,� ,B� in the
SOS phase. From an analysis of the pole structure of ��k ,��
we obtain the dispersion of the low-energy collective modes.
Consistent with the effect of the magnetic field on the phase
diagram, we find that the gap in the SOS phase increases
with B.

The remainder of the paper is organized as follows. In
Sec. II, we define the model Hamiltonian and summarize the
principal results of Ref. 19. The weak intersublattice interac-
tion is introduced in Sec. III, where we derive the resulting
changes to the phase diagram. In Sec. IV, we return to the
minimal NNN model but include the effects of an external
magnetic field. The inelastic structure factor �dynamical spin
susceptibility� is calculated by the RPA approximation in
Sec. V. We conclude with a summary and discussion in Sec.
VI. Some technicalities are given in the Appendix.

II. MODEL DEFINITION

The Hamiltonian contains two terms: an exchange inter-
action Hex and an atomic spin-orbit coupling H0

i ,

H = Hex + �
i

H0
i . �1a�

The term Hex describes spin and orbital exchange interac-
tions as well as couplings between spin and orbital degrees
of freedom. Using microscopic considerations and symmetry
constraints one can show that Hex is of the form19

Hex =
1

2�
ij

�JijSi · S j + 2KijTi · T j�4 + Si · S j�� , �1b�

where Si is the S=2 spin operator at site i. The orbital de-
grees of freedom are described by T=1 /2 pseudospin opera-
tors Ti that act on the x2−y2 and 3z2−r2 orbitals in the eg
subspace. An analysis of the exchange paths linking two A
sites shows that both first- and second-neighbor exchange
paths are of comparable length and have similar
multiplicity.7,24 This suggests that there is a substantial NNN
interaction and it is therefore necessary to keep in Eq. �1b�
the sum over both the NN and NNN sites. For convenience
we set Jij =J1 or J2 when ij are first- and second-neighbor
sites, respectively �and similarly for Kij�.

The second term in Eq. �1a�, H0
i , is the on-site spin-orbit

coupling which arises from second-order perturbation
theory,25

H0
i = −

�

3
��3Ti

x��Si
x�2 − �Si

y�2� + Ti
z�3�Si

z�2 − Si
2�	 , �1c�

where the coefficient � is estimated from microscopic atomic
calculations to be �
6�0

2 /�te. Here, �0 denotes the atomic
spin-orbit interaction and �te is the energy separation be-
tween the eg and t2g states. Note, that H0

i immediately leads
to a splitting of the ionic degeneracies because the ground
state of H0

i is the nondegenerate spin-orbital singlet,

1
�2

�x2 − y2��Sz = 0� +
1

2
�3z2 − r2���Sz = + 2� + �Sz = − 2�� .

�2�

Whether FeSc2S4 is in such a SOS phase depends on the
ratio between exchange and on-site spin-orbit interactions,

x � max�J1,J2,K1,K2	/� . �3�

We note that we have not included spin-orbit effects such
as Dzyaloshinskii-Moriya interactions in the exchange
Hamiltonian, Eq. �1b�. This may be surprising since the on-
site spin-orbit coupling in Eq. �1c� plays a crucial role in our
analysis. However, we expect that the spin-orbit corrections
to the exchange are smaller than the leading-order exchange
couplings by a factor of order �0 /�te. Using the numbers of
Ref. 19, �080 cm−1 and �te2500 cm−1, this yields the
Dzyaloshinskii-Moriya interaction D0.032J2. This makes
them subdominant both to the isotropic exchange couplings
in Eq. �1b� and the on-site spin-orbit interaction in Eq. �1c�,
which are comparable in FeSc2S4�this indeed defines the lo-
cation of the QCP—see below�.

From a comparison with experiments we showed in Ref.
19 that J2 is antiferromagnetic and the largest among all the
exchange-coupling constants, whereas � is competitive, but
slightly larger than the NNN spin-exchange interaction J2.
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FIG. 2. �Color online�. Phase diagram of the J2-� model, Eq.
�14�, as a function of magnetic field B and coupling ratio x. In zero
magnetic field the phase transition between the SOS phase and the
CO state occurs at xc=1 /16.
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This observation leads us to consider a “minimal” version of
model �II�, which only includes the NNN spin-exchange J2
and the on-site spin-orbit interaction � �i.e., J1=K1=K2=0�.
Within this J2-� model we demonstrated that FeSc2S4 is in
the SOS phase close to the QCP of Fig. 1.

The full phase diagram of Hamiltonian �1� as a function
of temperature and ratio x, Eq. �3�, includes a commensurate-
incommensurate transition within the ordered phase �see Fig.
1�. Deep in the ordered phase when the exchange interactions
are dominant �x�1� the incommensurate spin and orbital
order �IC� is generally favored by the exchange Hamiltonian
�1b�. With the inclusion of weak spin-orbit interaction, Eq.
�1c�, i.e., with decreasing x, the spin and orbital order be-
comes commensurate with the spins and orbitals both form-
ing a spiral with wave vectors p=2	�1,0 ,0� and q
= �0,0 ,0�, respectively.

III. EFFECTS OF WEAK INTERSUBLATTICE SPIN-
EXCHANGE INTERACTION

As mentioned in Sec. I, the inclusion of a small NN in-
teraction J1 induces a narrow region of incommensurate or-
der near the QCP �shaded area in Fig. 1�. In this section we
give a derivation of this results using a Landau expansion of
the effective action.

First, we note that the Hamiltonian in Eq. �14� has inde-
pendent cubic “internal” spin symmetry and cubic “external”
space-group symmetry. We therefore have the symmetry-
allowed free energy for two decoupled fcc sublattices19 near
the QCP,

f0��
�� = �
�=A,B;a

�v1
2��a��,a�2 + v2

2 �
b�a

��b��,a�2 + r���,a�2�
+ g1�

�,a
����,a�2�2 + g2 �

�,a,b
�
�,a

b �4

+ �
�

Sym��g3�
�,1
x �2�
�,2

x �2 + g4�
�,1
x �2�
�,2

y �2

+ g5
�,1
x 
�,1

y 
�,2
x 
�,2

y �	 , �4�

where the order parameters 
�,a are the �real� staggered mag-
netizations introduced by

�Si� = � �
a=x,y,z

�A,a�− 1�2xi
a

i � A sublattice

�
a=x,y,z

�B,a�− 1�2xi
a

i � B sublattice� �5�

and xi
a are the canonical half-integer coordinates of the fcc

lattice with the cubic supercell having unit length. For our
convenience we choose the same set of fcc coordinates for
the two sublattices. In Eq. �4�, “Sym” indicates symmetriza-
tion with respect to both wave vector �lower� and spin �up-
per� indices.

We now introduce weak intersublattice interactions. As a
result, extra terms which couple two fcc sublattices will ap-
pear in Eq. �4�. By the symmetry analysis, we obtain the
intersublattice terms,

f int��
	� = �
a

��A,a�a�B,a − ��A,a · �B,a�2, �6�

where we have kept the leading quadratic term �others have
more derivatives� and the most important quartic term, which
is when intersublattice couplings first appear without deriva-
tives. A number of other quartic couplings involving the two
sublattices are also allowed but do not play any important
role in what follows.

We now proceed to analyze the Landau theory of Eqs. �4�
and �6�. First consider the behavior on approaching the QCP
from the SOS phase. The first instability of the SOS phase is
signaled by the quadratic part of the action alone, i.e., the
vanishing of the lowest eigenvalue of the associated qua-
dratic form. Due to the linear derivative term, the unstable
eigenvectors are nonconstant fields of the form


A,a
b = 
a

b cos��xa + �a,b� ,


B,a
b = 
a

b sin��xa + �a,b� �7�

with �=� / �4v1
2�, and 
a

b ,�a,b arbitrary constants. There is
one linearly independent unstable eigenvector for each a and
b. The particular form of superposition which is favored in
the ordered state is determined by the quartic terms. We ex-
pect on physical grounds that the ordered states will be of
spiral type, with approximately constant magnitude of spin
expectation values, and with a “single q” structure. The latter
condition means that �A,a is nonzero only for a single a=x,
y, or z. A sufficient condition for a single q structure to be
favored is that g3 ,g4 ,g5�0 �though this condition can be
relaxed somewhat�. In this case, we have

�A,a = 
0 Re��ê1 + iê2�ei��xa+��� ,

�B,a = 
0 Re��− ê2 + iê1�ei��xa+��� . �8�

This corresponds to an incommensurate spiral state of spins
with the wave vector

p = �2	 � ���1,0,0� . �9�

The unit vectors ê1/2 define the plane in which the spins
rotate. At the quadratic level, this plane is arbitrary but it will
be selected by the quartic terms in the free energy. Presum-
ing that the system has axial cubic anisotropy �preferring
spins aligned with the x ,y, or z axes�, a �100� or symmetry-
related plane will be chosen. This is controlled in the free
energy by the coefficient g2, which should be negative to
mimic axial cubic anisotropy.

Now consider the evolution of the spin configuration as
the system becomes more strongly ordered. As ��� increases,
we expect the quartic terms in the free energy to become
more important, favoring commensurate states in which the
spins are aligned with the principal axis. To analyze how this
occurs, we presume that the spins remain in a single q struc-
ture �a spiral rather than a more exotic “spin lattice”� so that
��,a is nonzero only for one a. Furthermore, we assume that
the spins remain in a single �100� plane. Up to symmetry-
related choices we take a=x=1, and ê1= x̂ , ê2= ŷ in Eq. �7�.
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Finally, we presume that the fields depend only upon x, as
can be easily verified is true for the minimum free-energy
configurations.

Inserting this into Eqs. �4� and �6� and assuming 
0 is
constant, we obtain the reduced free-energy density, neglect-
ing an additive constant

f =
�

2
��x��2 + � cos 4�� + �x� �10�

with �=4v1
2
0

2 and �=g2
0
4 /2. This is a standard sine-

Gordon model, with incommensuration �. It describes a
competition between a commensurate state in which �+�x is
constant and an incommensurate one in which �x��� on
average. The transition between the two states is known as a
commensurate-incommensurate-transition �CIT�, and its lo-
cation is determined by the condition that the energy of a
single domain-wall excitation of the commensurate state �a
“soliton”� vanishes. In this way we can precisely determine
the location of the CIT. We find that the CIT occurs for26

�c =
2

	
����

�
. �11�

When ���c, the system is in a commensurate state.
We must now translate this condition back to obtain the

critical point in terms of microscopic parameters x, xc, and
J1 /J2. In Appendix, we determine the necessary coefficients
in Eqs. �4� and �6� �v1

2 ,r ,g1 ,g2 ,�� by deriving the effective
action by standard Hubbard-Stratonovich methods from the
microscopic spin-orbital Hamiltonian. The results are given
in Eqs. �A8� and �A9�. In addition, we require the amplitude

0 to minimize the free energy. With this we can calculate �
and �, and hence solve Eq. �11� for the location of the CIT.
To get the amplitude, we recognize that at the CIT the solu-
tion is commensurate, i.e., has the form of Eq. �8� with �
=�=0. Therefore, we may simply evaluate the free energy in
Eq. �4� using this form of the order parameter, and minimize
over 
0. The result is that


0
2 =

− r

2�g1 + g2�
, �12�

where at the CIT of course r�0. Combining the above re-
sults, we obtain the CIT transition point

xc1 =
1

16
�1 +

	2

4
� J1

J2
�2� �13�

for J1�J2. As expected, for small J1, the incommensurate
phase studied here is narrow and located only near the QCP
�see Fig. 1�. As discussed in Ref. 19, a different incommen-
surate phase arises for much larger J2, when the spin-orbit
interaction plays a minimal role. This transition to the second
incommensurate phase occurs at xc2�0.61�J2 /J1�2, far from
the QCP.

IV. J2-� MODEL IN A MAGNETIC FIELD

In this section we study the minimal J2-� model in an
external magnetic field B both in the commensurate ordered

�CO� and the SOS phases �see Fig. 1�. For definitiveness we
assume that the spins in the CO phase align themselves along
the x axis whereas the magnetic field is applied along the z
axis. We use mean-field theory to calculate the uniform and
staggered magnetizations and derive therefrom the magnetic
phase diagram of the J2-� model.

The minimal J2-� model in an external magnetic field B
contains only on-site and NNN interactions. Therefore the
diamond lattice decomposes into two fcc sublattices with J2
playing the role of the NN exchange interaction within each
sublattice. The Hamiltonian is

Hmin = �
�ij�

J2Si · S j + �
i

H0
i + B�

i

Si
z, �14�

where �ij� represents nearest-neighbor sites on an fcc sublat-
tice and H0

i is defined by Eq. �1c�. In the absence of a mag-
netic field and when J2 /��xc=1 /16 the system is in the CO
phase19 with the spins aligned antiferromagnetically along
one of the three cubic axes �here taken to be the x axis�. To
decouple the exchange interaction in Eq. �14� we employ
mean-field theory with the following ansatz for the average
spin at site i,

�Si� = n cos�p · ri�x̂ + mẑ . �15�

Here, m and n denote uniform and staggered magnetizations,
respectively, and ri are the usual half-integer coordinates of
the fcc sites. In the CO state the spiral momentum takes the
form p=2	�1,0 ,0� thereby encoding the antiferromagnetic
order along the x axis. In the disordered SOS phase the stag-
gered moment is vanishing, n=0. With this, the resulting
single-site mean-field Hamiltonian reads

Hi
MF = hzSi

z + hxSi
x + H0

i , �16a�

where we have introduced the two effective magnetic fields,

hz � 12J2m + B, hx � − 4J2n . �16b�

At zero temperature the self-consistent mean-field equations
for the uniform and staggered magnetizations are given by

m =
���hx,hz�

�hz
, �17a�

n =
���hx,hz�

�hx
, �17b�

where ��hx ,hz� denotes the ground-state energy of the mean-
field Hamiltonian �16�. The numerical solutions to these
equations are presented in Fig. 3. We find that with increas-
ing field the staggered magnetization is suppressed, and
eventually the magnetic order is destroyed. Hence, the criti-
cal coupling ratio xc moves from xc=1 /16 to larger values
with increasing field �see Fig. 2�. The uniform magnetization
shows a small “shoulder” at the critical magnetic field when
the staggered magnetization vanishes.

In the neighborhood of the QCP ��x /xc−1��1� and for B
small compared to J2 it is legitimate to expand the ground-
state energy ��hx ,hz� in the effective magnetic fields hx and
hz. Up to fourth order we have
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��hx,hz� 
 − 2� −
2

�
�hx

2 + hz
2� +

2

�3 �hx
4 + 4hx

2hz
2 + hz

4� .

�18�

Neglecting terms of order hz
3 and higher, we obtain the fol-

lowing expressions for the uniform magnetization:

m = �−
4B

48J2 + �
, SOS

−
�8J2 − ��B

2J2�48J2 − 7��
, CO � �19�

in the SOS and CO phases, respectively. Similarly, the stag-
gered magnetization is given by

n = �0, SOS

8�2�x − xc�B�� , CO
� �20�

with

xc�B� =
1

16
+

B2

16384J2
2 , �21�

where we retained only the lowest-order term in B. The ap-
proximate result for the uniform magnetization, Eq. �19�, de-
scribes the linear dependence on magnetic field in the regime
where B is small compared to J2 �cf. Fig. 3�. It is interesting
to note that this behavior agrees with the measured low-
temperature magnetic susceptibility in FeSc2S4. Indeed, it is
found in Ref. 7 that the magnetic susceptibility in FeSc2S4 at
T→0 saturates to a constant value, independent of B.

To conclude, we find that an external magnetic field leads
to a suppression of spin ordering. On the ordered side of the
QCP there is a phase transition to the disordered SOS phase
as the magnetic field is increased. This behavior is quite
different from a spin singlet phase in a typical spin-only
system such as TlCuCl3 �Ref. 21� or BaCuSi2O6,22 where
only the magnetic triplet excited states—magnons—respond
to the magnetic field whereas the nonmagnetic singlet
ground state is unaffected. Hence, the field stabilizes spin
order by Bose-Einstein condensation of magnons. Here,

however, the strong spin-orbit interaction leads to very dif-
ferent physics. Specifically, SOS is not a spin singlet but a
highly entangled quantum state of spin and orbital degrees of
freedom. As a consequence, it responds strongly to the ap-
plied field and indeed takes better advantage of the field than
does the ordered Néel state.

V. DYNAMICAL SPIN SUSCEPTIBILITY AND ENERGY
GAPS

In this section, we compute the dynamical spin suscepti-
bility in the SOS phase with the exchange coupling J2 treated
within the RPA. This could be compared to inelastic neutron-
scattering data. The energy gaps to the low-lying collective
modes are derived from an analysis of the pole structure of
the dynamical spin susceptibility.

In the SOS phase we can approximate the full magnetic
susceptibility of the J2-� model ����k ,� ;B� by the RPA in
terms of the noninteraction susceptibility �0

���k ,� ,B� of the
on-site Hamiltonian H0

i +BSi
z �see Eq. �1c��. For the xx com-

ponent we have

�xx�k,�;B� =
�0

xx���
1 − J�k��0

xx���
, �22�

where J�k� is the Fourier transform of the exchange cou-
pling,

J�k� = �
�A	

J2 cos�k · A� �23�

with �A	 denoting the 12 NNN lattice vectors. The single-site
spin susceptibility �0

xx�� ;B� can be constructed from the
spectral representation. At zero temperature �0

xx�� ;B� is
given by

�0
xx��;B� = �

j�0
� ��0�Sx�j��2

� j − � − i�
+

��0�Sx�j��2

� j + � + i�
� , �24�

where �0� and �j� are the ground state and excited states of
the on-site term H0

i +BSi
z, respectively. The energy difference

between the excited state �j� and the ground state �0� is de-
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B�J2
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5 10 15 20 25 30
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(b)(a)

FIG. 3. �Color online�. �a� Uniform magnetization m versus magnetic field B �in units of the spin-exchange J2� for different coupling
ratios x �from top to bottom x=0.15,0.10,0.05,0.02, respectively�. The arrows indicate the position of the QCP. �b� Staggered magnetization
n as a function of B �in units of the spin-exchange J2� for x=0.15,0.10,0.07,0.063 �from top to bottom curve�.
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noted by � j. Finite lifetime effects are parametrized by a
phenomenological damping ��0. In order to facilitate a di-
rect comparison with neutron-scattering data on polycrystal-
line samples we perform a numerical average of �xx�k ,� ;B�
over the angular components of the wave vector k. For a
given wave-vector magnitude k= �k� we define the angular-
averaged spin susceptibility by

�av
xx�k,�;B� =� sin �d�d��xx�k,�;B� , �25�

where � and � describe the direction of the wave vector k.
Since the inelastic neutron-scattering intensity is propor-
tional to the imaginary part of �av

xx�k ,� ;B� we compute
Im �av

xx�k ,� ;B� as a function of energy transfer � and wave-
vector magnitude k. Figure 4 displays the numerically calcu-
lated dynamical spin susceptibility Im �av

xx�k ,� ;0� in zero
magnetic field. The excitation minima near k=2	 /a and k
=5	 /a agree well with the neutron-scattering data on poly-
crystalline samples.5

The dispersing excitation branch shown in Fig. 4 is a
collective mode associated with zeros of the real part of the
denominator in Eq. �22�. For the unaveraged dynamical spin
susceptibility Im �xx�k ,� ,B� the frequency minimum �x of
the dispersing collective mode occurs at k=2	�1,0 ,0�.
Upon approaching the QCP from the disordered side and for
small magnetic field B we find that the gap �x is vanishing as

�x = 4��xc�B� − x , �26�

where xc�B� is defined by Eq. �21�. �The same result also
holds for the energy minimum �y of the collective mode
described by Im �yy�k ,� ;B�.� Figure 5 depicts the gap �x,
Eq. �26�, as a function of magnetic field for different cou-
pling ratios x in the SOS phase.

VI. DISCUSSION

A. Summary

In this work we have refined the theory, developed in Ref.
19, of the QCP in a spin-orbital Hamiltonian for the A-site
spinel compound FeSc2S4. The model exhibits an interesting

quantum critical point; on increasing the second-neighbor
spin-exchange interaction J2 it passes through a zero-
temperature phase transition from a spin-orbital singlet state
to a magnetically and orbitally ordered phase. First, we con-
sidered the effects of a weak nearest-neighbor exchange in-
teraction J1, which induced a narrow region of incommensu-
rate phase near the QCP. We studied the associated
commensurate-incommensurate transition. Next, we in-
cluded the effects of an external magnetic field. While the
quantum critical point studied here seems similar to the one
found in, e.g., bilayer Heisenberg antiferromagnets, its be-
havior under an external magnetic field is quite different.
Namely, we found that a magnetic field suppresses magnetic
and orbital order, and a transition from the ordered state to
the spin-orbital singlet phase occurs at some critical-field
strength �see Fig. 2�. From these findings, we conclude that
FeSc2S4, which is close to the quantum critical point, but in
the spin-orbital singlet phase, does not show any field-
induced transition to an ordered state. Indeed, recent NMR
experiments in fields up to 8.5 T showed no signs of mag-
netic ordering.10 Furthermore, we computed the dynamical
spin susceptibility in the SOS phase by means of a random-
phase approximation. Averaging our results over the angular
components of the wave vector we performed a comparison
with available neutron-scattering data on polycrystalline
FeSc2S4 samples and found reasonable agreement �see Fig.
4�.

B. Experiments

1. Magnetic probes

The theory expoused in this paper and Ref. 19 is broadly
consistent with the results of a variety of magnetic probes
applied to FeSc2S4. It explains the small but nonzero spin
gap measured in inelastic neutron-scattering and NMR 1 /T1
relaxation-rate measurements, as well as the temperature de-
pendence of the uniform magnetic susceptibility. The present
calculation of the dynamical spin susceptibility matches rea-
sonably well with experiment. The lack of field-induced

k [2p / a]
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FIG. 4. �Color online� Imaginary part of the angular-averaged
RPA spin susceptibility in zero magnetic field Im �av

xx�k ,� ;0� with
J2 /�=0.05 and a damping � /�=0.2.

�10 �5 5 10
B�J2

0.1
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FIG. 5. �Color online�. Energy gap �x �in units of the spin-orbit
coupling �� as a function of magnetic field �in units of the spin-
exchange J2� for different coupling ratios x �from top to bottom x
=0.05,0.06,0.062,1 /16�.
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magnetic ordering is also in agreement with the calculations
in this paper.

2. Specific heat and disorder

The specific-heat data on FeSc2S4 reveal several energy
scales. The magnetic specific heat divided by temperature,
Cm /T, exhibits a peak at T�6 K. The integral of Cm /T ex-
ceeds the spin-only entropy R ln 5, approaching instead
R�ln 5+ln 2� for T�60 K, evidencing the twofold orbital
contribution. This is quite consistent with the present model.
However, the lower temperature behavior is more complex.
For T�2 K, experiments are fitted approximately by Cm
AT+BT2.5, with the linear term dominant for T�0.2 K.
The latter behavior appears at odds with the indications of an
energy gap of 1–2 K in neutron-scattering and NMR experi-
ments.

A possible reconciliation of these observations is in the
effects of disorder. Microscopically, we expect the dominant
type of disorder to be inversion defects in which the A and B
sublattice atoms are interchanged. Inversion is very common
in spinels. To understand the effects of such defects, we ap-
ply general arguments based on the Landau expansion and
the theory of disordered systems. These arguments depend
very little upon the specific nature of the defects, other than
that they are random, not very correlated, and do not break
time-reversal symmetry.

These conditions lead to an important observation since
the order parameters ��,a are odd under time-reversal, disor-
der couples only quadratically to them. Thus impurities be-
have, from the point of view of critical behavior, as random
bonds rather than random fields. In three dimensions, it is
known that in this case both phases are perturbatively stable
to weak impurities. However, sufficiently close to the QCP,
even weak impurities become nonperturbative. More for-
mally, random bond disorder is a relevant variable at the
QCP. Physically, the most important effect of disorder is to
locally break the degeneracy of the different ground states of
the clean system within the ordered phase. For instance, a
specific impurity configuration might favor the p
=2	�1,0 ,0� state in one region and p=2	�0,1 ,0� state in
another. Far from the QCP, the surface-energy cost to create
a domain wall between the two states overwhelms the ran-
dom energy gain, and the system remains uniform. However,
close to the QCP, the surface tension becomes small and one
expects the system to break into domains. Thus impurities
induce a nonuniform disordered magnetic state, a “cluster
spin glass,” near the QCP. We expect, moreover, that this
cluster spin-glass state extends slightly past the QCP into the
region of the SOS state of the clean system. This occurs
because the system lowers its energy slightly more than in
the clean case, by taking advantage of the impurities locally.

This scenario provides a possible explanation of the
specific-heat data. At low temperature, a T-linear specific
heat is a generic feature of spin glasses. It should occur with
a small coefficient A when disorder is weak. At higher tem-
perature, one recovers approximately the intrinsic bulk clean
behavior, which would be of the form CmBT3f�� /kBT�,
where � is the energy gap and f��� is a monotonic scaling
function satisfying f�0�=1 and f����7/2e−� for ��1. The

T3 dependence is characteristic of the linearly dispersion
modes at the QCP, which is cut off by the gap. It seems
plausible that the experimental observed T2.5 dependence re-
flects the attempt to fit such a form to a single power law. If
the impurities are not too weak, it is also plausible that they
modify the T3 behavior somewhat. In any case, the overall
behavior seems reasonably in line with theoretical expecta-
tions.

C. Directions for future work

The theory in this paper �and Ref. 19� appears to give a
consistent explanation for the experimental results on
FeSc2S4. However, there are a number of directions that
could be explored in the future. It would be desirable to have
a direct proof of the postulated spin-orbital entanglement in
the ground state of FeSc2S4. Theoretical proposals and ex-
perimental studies to this end would be welcome. Given the
smallness of the gap in FeSc2S4, there is a possibility that it
might be driven across the QCP by pressure, which would be
very exciting. Looking more broadly, it appears that the
mechanism for quantum criticality described here could ap-
ply at the very least to any material with Fe2+ ions in a
tetrahedral environment. It would be interesting to survey
such compounds for signs of this physics.
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APPENDIX: HUBBARD-STRATONOVICH
TRANSFORMATION AND LANDAU ACTION

In this appendix, we derive the effective Landau action,
Eqs. �4� and �6�, from the microscopic Hamiltonian �1� using
the Hubbard-Stratonovich method to decouple the exchange
interactions. In this way, we can relate the coefficients in
Eqs. �4� and �6� to the microscopic exchange-coupling pa-
rameters Ji and the spin-orbit coupling �. We consider the
J1-J2-� model on the diamond lattice,

H = �
�ij�

J1Si · S j + �
��ij��

J2Si · S j + �
i

H0
i , �A1�

where the brackets �ij� and ��ij�� denote the summation over
first- and second-nearest neighbors, respectively. The on-site
spin-orbit coupling term H0

i is given by Eq. �1c�. The parti-
tion function reads

Z = Tr exp�− ��
i,j

JijSi · S j − ��
i

H0
i � �A2�

with the exchange-coupling matrix Jij. Here, Jij =J1 or J2,
when ij connects first-neighbor or second-neighbor sites, re-
spectively. We decouple the exchange interaction by intro-
ducing the auxiliary field �i and transforming the partition
function to
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Z =� D�e�/2Jij
−1�i·�j Tr e−��i�H0

i +Si·�i�. �A3�

Expanding around the saddle point yields

Z =� D� exp�− Seff� �A4�

with the effective action

Seff = �
0

�

d��−
1

2
Jij

−1�i · � j +
2���i · ���i

�3 −
2�i · �i

�

+ 2
��i · �i�2 + 2��i

x�i
y�2 + 2��i

x�i
z�2 + 2��i

y�i
z�2

�3 � .

�A5�

Assuming J1�J2 and expressing the �� field in terms of the
staggered magnetizations ��,a,

���ri� = �− �2xi��,x + �− �2yi��,y + �− �2zi��,z, �A6�

we obtain the quadratic part of the free-energy density,

f �2���
�� = �
k

�
a
� 1

8J2
−

2

�
+

1

32J2
�1 +

J1
2

4J2
2�ka

2����A,a�k��2

+ ��B,a�k��2� +
iJ1

16J2
2ka�A,a�− k� · �B,a�k� . �A7�

We note that Eq. �A7� is compatible with Eqs. �4� and �6�,
which we derived using symmetry considerations. By com-
paring the coefficients in Eqs. �4� and �6� to those in Eq.
�A7� we find the following relations:

v1
2 = 1/�32J2��1 +

J1
2

4J2
2� ,

r = 1/�8J2� − 2/� ,

� = J1/�16J2
2� . �A8�

Similarly, expressing the quartic terms in Eq. �A5� in terms
of the staggered magnetizations one can show that the coef-
ficients g1 and g2 are given by

g1 = 4/�3,

g2 = − 2/�3. �A9�
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